While there is a very broad selection of pulsed lasers currently available, the vast majority rely on just two pulsing techniques—namely, Q-switching and modelocking, able to deliver nanosecond or picosecond/femtosecond pulses, respectively. This article reviews the basics of each technology, the output characteristics that they deliver, and a few of the many applications that they support.
Q-switching
A Q-switch is essentially a shutter with a very fast response time placed inside a laser resonator. In one state (low Q) it creates cavity loss, preventing lasing; in the other (high Q), it has essentially no loss, so lasing can occur.
Key steps of the Q-switching process include the Q-switch state (cavity loss), energy storage, and output power as a function of time (see Fig. 1). At the start of each cycle, the Q-switching element is set to prevent lasing. While the Q-switch is in this mode, the pump energy, supplied continuously, is accumulated in the laser crystal (assumed to have a long upper-state lifetime). The Q-switch state is then changed, and the cavity loss quickly drops to zero. This causes a short pulse to build up by using all the stored gain. The combination of stored gain and short pulse rise and fall times results in a high peak power pulse with durations of a few nanoseconds up to a few hundred nanoseconds.
The most commonly used Q-switch devices are electro-optic (EO) and acousto-optic (AO) modulators. In an EO modulator, a crystal rotates the polarization of light passing through it when a voltage is applied. By inserting this crystal between two crossed polarizers, light can only pass through this assembly when the applied voltage rotates the polarization. EO modulators are typically used at low pulse-repetition rates (up to a few kilohertz) and high pulse energies, commonly in the range of multiple millijoules per pulse.
For higher pulse-repetition rates (tens of kilohertz or more) and lower pulse energies, an AO modulator is usually preferred. In an AO modulator, the crystal deflects the intracavity beam by a fixed angle when radio-frequency (RF) power is applied, thus preventing lasing.
Modelocking
Modelocking is a special operating condition of continuous-wave (CW) laser materials that is used for generating output with femtosecond or picosecond pulse duration. Laser materials with a wide gain bandwidth, such as Ti:sapphire, can produce a broadband output (tens of nanometers of more). Detailed examination reveals that this output consists of hundreds, thousands, or even tens of thousands of individual longitudinal modes, each satisfying the equation:
Nλ = 2 × cavity length (where N is a large integer)
In most lasers, these modes randomly gain and lose intensity, and have random phase relationships relative to each other. In modelocking, the relative phase of all these modes is fixed. Fourier analysis shows that the resultant superposition of modes manifests itself as a very short pulse that travels around the cavity at the speed of light. Every time this pulse reaches the output mirror, the laser emits a part of this pulse.
The shortest possible laser pulsewidth (called the transform-limited pulsewidth) ultimately depends on the number of modes involved. Since the pulse duration is the Fourier transform of the spectral bandwidth of the laser, broader bandwidths support shorter pulsewidths and vice versa. The pulse repetition rate is determined by the round trip time of the laser cavity. For example, in a Ti:sapphire laser oscillator with a cavity length of less than 2 m and a bandwidth greater than 100 nm, the repetition rate is 76 MHz and the pulsewidth can be close to 10 fs.
A CW laser can be forced into modelocked operation by any mechanism that provides lower optical losses when the laser runs in this regime rather than in a CW free-running regime. There are two categories of modelocking that can be used, called active and passive modelocking. Active modelocking refers to fast gating of the cavity (for example, using a AO modulator) at the cavity round trip rate, which is on the order of 76 MHz for a typical commercial Ti:sapphire oscillator.
Passive modelocking can be performed through the so-called Kerr lens effect in the gain material. Here the high peak intensity associated with modelocked operation induces a refractive-index change (equivalent to a lens) in the laser crystal. This lens focuses the beam, enabling it to pass through an internal aperture suffering only minor losses. In contrast, CW operation would result in clipping and attenuation. Another passive modelocking technique uses a "bleachable" optic, such as a saturable Bragg reflector (SBR). This is a special cavity mirror that only approaches 100% reflectivity when its absorbing semiconductor layer is overloaded by the high peak power of modelocked operation.
Q-switched pulses for materials processing
Efficient pulsing of a laser beam yields short pulses with high energy and high peak power. Q-switching is most commonly used with neodymium (Nd) doped laser hosts such as Nd:YAG, Nd:YVO4, and Nd:YLF. The dominant application for these diode-pumped, Q-switched lasers is in materials processing, and particularly precision micromachining, across most sectors of semiconductors/electronics and related industries (see Fig. 2). Q-switched diode-pumped solid-state (DPSS) lasers, such as the Coherent AVIA and Matrix series, provide ideal flexibility for these applications in terms of diversity of power, pulse repetition rate, and wavelength.